If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25^2x-1=1/125
We move all terms to the left:
25^2x-1-(1/125)=0
We add all the numbers together, and all the variables
25^2x-1-(+1/125)=0
We get rid of parentheses
25^2x-1-1/125=0
We multiply all the terms by the denominator
25^2x*125-1-1*125=0
We add all the numbers together, and all the variables
25^2x*125-126=0
Wy multiply elements
3125x^2-126=0
a = 3125; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·3125·(-126)
Δ = 1575000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1575000}=\sqrt{22500*70}=\sqrt{22500}*\sqrt{70}=150\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-150\sqrt{70}}{2*3125}=\frac{0-150\sqrt{70}}{6250} =-\frac{150\sqrt{70}}{6250} =-\frac{3\sqrt{70}}{125} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+150\sqrt{70}}{2*3125}=\frac{0+150\sqrt{70}}{6250} =\frac{150\sqrt{70}}{6250} =\frac{3\sqrt{70}}{125} $
| 39-2s=475 | | -8(-2x)=40 | | 7/2p-(p+4))=6 | | 8-m/3=m | | 32+120=m1 | | -2/3x+1=1/3x-2 | | -9y-7=-4y+12 | | 5-6(5-8x)=0 | | 32+m1+120=180 | | 14x=2009 | | x^+25=0 | | 4-6(5x+8)=3 | | 8(3x-2)-9=23 | | -3-11=6x+18-5× | | 7m-2=5m+6 | | X+55+4x+5=180 | | X+55+4x+5=90 | | 5-3(5-x)=8 | | C=(3c-6)÷5 | | 14/3=x/9 | | (x+7)^2+6x=13 | | 0=w^2-33w+161 | | 3x+(-4x+20)=9 | | 3u-27=-3(u-1) | | 2(x+8)=x-2 | | 5a=3a-6 | | 0=w^2-32w+161 | | 1/3+1/4+1/6+7000=x | | -7-36y-36=-3y-8+3 | | 3x-1=9+1x | | 13v+1-6v=5(v+3) | | 3^2x+11=27^x-5 |